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Abstract. The electron-proton low energy bremsstrahlung process is investigated in a two-component
plasma. The corrected Kelbg potential taking into account the quantum effects is applied to describe the
electron-proton interaction potential in a two-component plasma. The straight-line trajectory method is
applied to the motion of the projectile electron in order to investigate the variation of the bremsstrahlung
cross-section as a function of the scaled impact parameter, thermal de Broglie wavelength, projectile energy,
and photon energy. The results show that the quantum-mechanical effects decrease the bremsstrahlung
cross-sections when the de Broglie wavelength (λ) is greater than the Bohr radius (a0). It is also found
that the quantum effects are important only for the region of impact parameters b < 3a0.

PACS. 52.20.-j Elementary processes in plasmas

1 Introduction

The bremsstrahlung process [1–12] in plasmas has re-
ceived much attention since this process has been widely
used for plasma diagnostics in laboratory and astrophys-
ical plasmas. Recently, in weakly coupled plasmas [6,
10], the low energy bremsstrahlung process has been in-
vestigated using the Yukawa type Debye-Hückel poten-
tial [12] with the classical trajectory method. The Debye-
Hückel potential describes the properties of a low density
plasma and corresponds to a pair correlation approxima-
tion. The plasmas described by the Debye-Hückel model
are called ideal plasmas since the average energy of in-
teraction between particles is small compared to the av-
erage kinetic energy of a particle [13]. However, in the
region of partial degeneration and strong coupling re-
gion, the interaction potential is different from a pure
Coulomb or screened Coulomb potential because of the
strong coupling and quantum effects of nonideal parti-
cle interaction. Such systems can be observed in labora-
tory and astrophysical plasmas. Then, the bremsstrahlung
spectrum due to electron-ion Coulomb scattering in par-
tially degenerated strong coupling quasi-classical plasmas
is different from that in classical ideal plasmas. Thus, in
this paper we investigate the bremsstrahlung process in
the electron-proton scattering in a two-component quasi-
classical plasma. An effective potential model so called
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the corrected Kelbg potential [14,15] including classical
as well as quantum-mechanical effects such as the Heisen-
berg principle and the Pauli exclusion principle is applied
to describe the interaction potential between the projec-
tile electron and target ion in a two-component quasi-
classical plasma. The straight-line trajectory method [2,
3,16] is applied to obtain the differential bremsstrahlung
cross-section as a function of the scaled impact parame-
ter, thermal de Broglie wavelength, projectile energy, and
photon energy.

In Section 2, we discuss the expression of the
bremsstrahlung cross-section in scattering of the low
energy projectile electron with the target proton in a
two-component-plasma described by the correct Kelbg
potential. In Section 3 we obtain the closed form of the
differential radiation cross-section using the components
of the force parallel (F‖) and perpendicular (F⊥) to the
velocity of the projectile electron. We also investigate the
variation of the radiation cross-section with a change of
the impact parameter and the thermal de Broglie wave-
length. Finally, in Section 4, discussions are given.

2 Classical bremsstrahlung cross-section

The expression of the low energy bremsstrahlung cross-
section [3] is given by

dσb = 2π
∫

db b dwω(b), (1)
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where b is the impact parameter and dwω is the differential
probability of emitting a photon of frequency ω within dω
when a projectile particle changes its velocity in collisions
with a static target system. For all impact parameters,
dwω is given by the Larmor formula [17] for the emission
spectrum of a nonrelativistic accelerated electron:

dwω =
8πe2

3~m2c3
|Fω|2

dω
ω
, (2)

where m is the electron rest mass and Fω is the Fourier co-
efficient of the force F(t) acting on the projectile electron

Fω =
1

2π

∫ ∞
−∞

dt eiωt F(t). (3)

The straight-line character of the motion of the projec-
tile electron in the field of the scattering potential can
also be investigated using the modified hyperbolic-orbit
curved trajectory method [18]. It has been known that
the bremsstrahlung cross-section using the straight-line
trajectory method and the curved trajectory method are
almost identical for impact parameters b > a0, where a0

(= ~2/me2) is the Bohr radius [9]. Thus, the straight-line
trajectory method for the region of impact parameters b >
a0 is quite reliable. Since the investigation of the quantum-
mechanical effects on the electron-proton bremsstrahlung
process in a two-component quasi-classical plasma for
b > a0 is the main purpose of this work, the straight-line
trajectory method has been retained throughout this pa-
per. In the straight-line trajectory method, the position of
the projectile electron can be represented as r(t) = b+vt
with b · v = 0, where v is the velocity of the projectile
electron. We can set up coordinate axes to compute Fω so
that the electron orbit is in the collision plane; then

|Fω |2 =
∣∣F‖ω∣∣2 + |F⊥ω |2 , (4)

where the Fourier coefficients F‖ω and F⊥ω are the compo-
nents of force parallel and perpendicular to the projectile
velocity, respectively.

In the region of partial degenerate and strong cou-
pling, the interaction of charged particles cannot be rep-
resented by a pure Coulomb potential but it can be in-
troduced by effective pair potentials [19–21]. The Kelbg
potential [19] obtained by the first-order perturbation the-
ory is known to be a good approximation for two-particle
Slater sums in the case of small parameter ξ (= e2/λkBT )
for large separation of the electron-proton interaction,
where λ (= ~/

√
2mkBT ) is the thermal de Broglie wave-

length, kB denotes the Boltzmann constant, and T is the
plasma temperature. However, the Kelbg potential has
a deviation from the exact value of the Slater sums for
small separations. Very recently, the corrected Kelbg po-
tential [14,15] was obtained using the Slater sum and its
first derivative for small separations and for low tempera-
tures kBT < 0.3Ry, where Ry (= me4/2~2 ∼= 13.6 eV) is
the Rydberg constant. The corrected Kelbg potential [15]
for the electron-proton interaction in a two-component
plasma including all quantum effects (the Heisenberg un-
certainty principle and the Pauli exclusion principle) can

be shown to be

V (r) =
e2

r

{
1− e−r

2/λ2
+
√
π(r/λ) [1− erf(r/λ)]

}
− kBT Ã(ξ)e−r

2/λ2
, (5)

where erf(x) [= (2/
√
π)
∫ x

0
dt e−t

2
] is the error function

and the temperature-dependent parameter Ã(ξ) is repre-
sented by

Ã(ξ) = −
√
πξ + ln

[√
πξ3

(
ζ(3) +

1
4
ζ(5)ξ2

)
+4
√
πξ

∫ ∞
0

dy
y e−y

2

1− e−πξ/y

]
, (6)

here ζ(p) is the Riemann zeta functions [22]. In the ab-
sence of the quantum effects (λ→ 0), the corrected Kelbg
potential V (r) goes over into the pure Coulomb poten-
tial VC(r) = e2/r. The use of the corrected Kelbg po-
tential (Eq. (5)) and the straight-line trajectory impact
parameter approach allows us to derive analytic formulas
for the Fourier coefficients of the force after some algebra:

Fµω = − e2

πva0
F̄µω(b̄, λ̄, ε̄, Ē), (µ =‖, ⊥), (7)

where the scaled Fourier coefficients F̄‖ω and F̄⊥ω are
given by

F̄‖ω = i
∫ ∞

0

dτ τ sin ητ
[

1
(b̄2 + τ2)3/2

(
1− e−(b̄2+τ2)/λ̄2

)
+
Ã(2λ̄)
λ̄4

e−(b̄2+τ2)/λ̄2

]
, (8)

F̄⊥ω =
∫ ∞

0

dτ b̄ cos ητ
[

1
(b̄2 + τ2)3/2

(
1− e−(b̄2+τ2)/λ̄2

)
+
Ã(2λ̄)
λ̄4

e−(b̄2+τ2)/λ̄2

]
, (9)

here τ (≡ vt/a0) is the scaled time, η ≡ ωa0/v, b̄ (≡ b/a0)
is the scaled impact parameter, λ̄ (≡ λ/a0) is the scaled
de Broglie wavelength, and ξ = 2λ̄. Then, in nonrelativis-
tic limits, the classical differential bremsstrahlung cross-
section is found to be

dσb =
16
3
α3a2

0

Ē

dω
ω

∫ ∞
b̄min

db̄ b̄
(∣∣F̄‖ω∣∣2 +

∣∣F̄⊥ω∣∣2) , (10)

where α (= e2/~c ∼= 1/137) is the fine structure constant
and Ē (≡ E/Ry = mv2/2Ry) is the scaled kinetic energy
of the projectile electron. Here the scaled minimum im-
pact parameter b̄min corresponds to the closest distance
of approach at which the electrostatic potential energy
of interaction is equal to the maximum possible energy
transfer [23], i.e., mv2/2 ≈ V (b).
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Fig. 1. The scaled doubly differential radiation cross-section
(d2χb/dε̄db̄) (Eq. (13)) in units of πa2

0 as a function of the
scaled impact parameter (b̄ = b/a0) for the hard photon radia-
tion case (ε/E = 0.9) when Ē = 0.5. The solid line represents
the radiation cross-section for λ̄ (= λ/a0) = 1.5. The dashed
line represents the radiation cross-section for λ̄ = 1. The dotted
line represents the radiation cross-section for λ̄ = 0.5.

3 Radiation cross-section

The differential radiation cross-section for the
bremsstrahlung process is defined by [17]

dχb

dε
≡ dσb

~dω
~ω, (11)

=
16
3
α3a2

0

Ē

∫ ∞
b̄min

db̄ b̄
(∣∣F̄‖ω∣∣2 +

∣∣F̄⊥ω∣∣2) , (12)

where ε (≡ ~ω) is the radiation photon energy. In non-
relativistic limits, the parameter η can be rewritten as
η = ε̄/2

√
Ē, where ε̄ (≡ ~ω/Ry) is the scaled pho-

ton energy. Then, the scaled doubly differential radia-
tion cross-section in units of πa2

0 for the electron-proton
bremsstrahlung process, i.e., the scaled differential radi-
ation cross-section per scaled impact parameter, can be
presented as

d2χb

dε̄db̄
/πa2

0 =
16
3π

α3

Ē
b̄

×
[∣∣F̄‖ω(b̄, λ̄, ε̄, Ē)

∣∣2 +
∣∣F̄⊥ω(b̄, λ̄, ε̄, Ē)

∣∣2] · (13)

In order to investigate the quantum-mechanical effects on
the scaled doubly differential bremsstrahlung radiation,
we consider three cases of the thermal de Broglie wave-
length: λ̄ (≡ λ/a0) = 0.5 , 1, and 1.5, and we consider two
cases for the ratio of the radiation photon energy to the ki-
netic energy of the projectile electron ε/E (= 2~ω/mv2) =
0.1 (soft photon radiation) and 0.9 (hard photon radia-
tion). Here, we choose Ē = 0.5 since the bremsstrahlung
cross-section equation (1) is known to be reliable for low
energy projectiles (v < αc) [3]. Figure 1 shows the scaled
doubly differential radiation cross-section (d2χb/dε̄db̄) in
units of πa2

0 as a function of the scaled impact param-
eter b̄ (= b/a0) for the electron-proton bremsstrahlung
process in a two-component plasma for the hard photon
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Fig. 2. The scaled doubly differential radiation cross-section
(d2χb/dε̄db̄) (Eq. (13)) in units of πa2

0 as a function of the
scaled impact parameter (b̄ = b/a0) for the soft photon radia-
tion case (ε/E = 0.1) when Ē = 0.5. The solid line represents
the radiation cross-section for λ̄ (= λ/a0) = 1.5. The dashed
line represents the radiation cross-section for λ̄ = 1. The dotted
line represents the radiation cross-section for λ̄ = 0.5.

radiation case (ε/E = 0.9). Figure 2 shows the scaled
doubly differential radiation cross-section as a function of
the scaled impact parameter for the soft photon radia-
tion case (ε/E = 0.1). As we can see in these figures, the
quantum-mechanical effects decrease the radiation cross-
sections for λ̄ > 1, i.e., when the de Broglie wavelength (λ)
is greater than the Bohr radius (a0). It is found that the
quantum-mechanical effects are important for the region
of impact parameters b < 3a0. For large impact parame-
ters, the quantum-mechanical effects are almost negligible.
Hence, the quantum effects are found to be only important
near the target nucleus.

4 Discussions

We have investigated the quantum effects on the electron-
proton bremsstrahlung process in a two-component
plasma. The corrected Kelbg potential taking into ac-
count the quantum-mechanical effects is applied to de-
scribe the electron-proton interactions in a two-component
plasma. The straight-line trajectory method is applied to
the motion of the projectile electron in order to investigate
the variation of the differential bremsstrahlung radiation
cross-section as a function of the scaled impact parame-
ter, thermal de Broglie wavelength, projectile energy, and
photon energy. It is found that the quantum-mechanical
effects substantially decrease the bremsstrahlung cross-
sections when the de Broglie wavelength is greater than
the Bohr radius. The quantum-mechanical effects are
also found to be important for b < 3a0. However, the
quantum-mechanical effects on the bremsstrahlung cross-
section are decreased with increasing the impact param-
eter. These results provide useful information on the
electron-ion bremsstrahlung processes in quasi-classical
two-component plasmas.
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